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The possible motions of a plane multilink system along a horizontal plane are investigated. Forces of dry friction act between 
the multilink system and the plane, obeying Coulomb's law. The multilink system is driven by internal control torques acting at 
the joints connecting the links. Control methods are constructed that ensure motion of the multilink system as a whole in any 
given direction. The velocity of these motions is estimated. The forms of motion found can serve as a model of the movement 
of snakes and other animals, and can also be used in designing snake-like robotic systems. © 2000 Elsevier Science Ltd. All rights 
reserved. 

1 . I N T R O D U C T I O N  

We will consider different ways in which bodies (apparatus, vehicles and animals) can move along a 
plane horizontal surface. Suppose there are no external forces, apart from gravitational and surface 
reaction forces, and also no reactive forces. Then, as is well known, friction forces at the points of contact 
of the body with the surface play an important role: it is only when these forces are present that motion 
can begin at all. A distinguishing feature of most known methods of motion, using wheels, legs or 
caterpillar tracks, is as follows: during the motion, different points of the body come into contact with 
the surface. In fact, during the rolling of a wheel the contact points change continuously, during walking 
they change from step to step, and so on. In those rare cases where the contact points do not change 
(for example, it is possible to ski without removing the skis from the snow), redistribution of the normal 
pressure forces occurs between the points of contact (the skier transfers his weight from one leg to the 
other). 

However, there is a method of motion where the contact points remain unchanged and, furthermore, 
where the normal pressure of the body on the surface at these points also does not change. This method 
of motion occurs in snakes and some other animals. They are in constant contact with the surface over 
their entire (or ahnost entire) length and move merely by bending their body. These animals can move 
both forwards and sideways, i.e. perpendicular to the axis of their body. Different aspects of the 
mechanics of snakes, and also certain problems of the mechanics of robots using this principle of motion, 
were discussed in [1-3]. 

A distinguishing feature of this method of motion is that the control torques driving the body are 
applied to axes perpendicular to the plane of motion. In other words, all motion of the system is planar. 

The present paper proposes a mechanical model of this method of motion. For the case of a simple 
three-link system it is shown that, purely by means of internal torques acting at the joints, it is possible 
to ensure that the system moves in any given direction or rotates on the spot. It is assumed that dry 
friction forces act between the multilink system and the plane. The periodic laws of variation of the 
joint angles and the corresponding forms of motion of the multilink system are constructed and the 
displacements and velocities of motion are estimated. 

2. THE M E C H A N I C A L  MODEL 

Consider a plane three-link system 01CIC202 moving along a horizontal plane (Fig. 1). For simplicity, 
we will assume that the entire mass of the system is concentrated at the points O1, Ct, C2 and 02 which 
are sliding along the plane. It is assumed that the links are absolutely rigid rods, and that their mass is 
negligible. The n~Lasses concentrated at the joints C1 and C2 will be denoted by ml, and the mass of 
each of the end points O1 and 02 will be denoted by m 0. Thus, the mass of the entire multilink system 
is equal to m = 2(m0 + ml). The lengths of the links 01C1 and C202 a r e  assumed to be equal and are 
denoted by l, and the length of the link C1C2 is denoted by 2a. The link C1C2, together with the masses 
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Fig. 1. 

concentrated at the joints C1 and C2, will be referred to as the body, and the links OlC1 and C202, together 
with the end masses, will be termed the end links. 

In the plane of motion, we will introduce a fixed Cartesian system of coordinates Oxy. The Cartesian 
coordinates of the centre of mass of the body C1C2 will be denoted by x, y, and the angles of inclination 
of the links 01C1, CIC2 and C202 to thex  axis will be denoted by 01, 0 and 02 respectively. We then have 

ej = o + o¢1, 02 = e + ¢z 2 (2 .1)  

where (xl and ot 2 are the angles between the body and the end links 01C1 and Cz02 respectively (see 
Fig. 1). The Cartesian coordinates of the joints C1 and (72 and the end points O1 and Oz are represented 
as follows 

xiC = x ~acosO,  y f  = yT-as inO 

x ° =x.T.aeosO:T.lcosOi,  yl ° = y ~ a s i n O T - l s i n O  i 
(2.2) 

Here  and below, the upper minus and plus signs correspond to i = 1, and the lower signs to i = 2. 
Using Eqs (2.2), we define the coordinates of the centre of mass C of the system 

x c = x - mom-ll(cos 01 - cos 02) 

Yc = Y - moon-q( sin 01 - sin 02), m = 2(m o + mj) 
(2.3) 

Differentiating relations (2.2), we find the components of the velocities of the points C~, C2, O1 and 
Oz 

!lxiC = ~+al~sin0, vyiC = :9 :l: a(~ cos 0 

o 0 = k + ( a O s i n O + l e i s i n O i )  ' ilyi ~.(a~cosO+lOiCOSOi)  Il xi -~ 

(2.4) 

The angular momentum of the multilink system about the origin of coordinates is calculated from 
the formula 

2 (..olX° Y°ll+.., ]xCyCl/c c (2.5) 
x=,:,y i io,, o:, 

Substituting relations (2.2)and (2.4) into expression (2.5), after lengthy but elementary reduction we 
obtain 

K = m(x~ - y.~) + 2(m0/2 +mo a2 + mla 2)0 + mo 12 ((z I + ~2 ) + 

+mol[.~(sin O 1 - sin 02) - y(cos O I - cos 02)] + moal0(eos (x t + cos ot 2 ) + (2.6) 

+mol(~ I ( - x  cos 01 - y sin 0 ! + a cos a I ) + molO 2 (x cos 02 + y sin 02 + a cos ot 2 ) 
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For each of the masses O1, C1, C2 and 02, its weight is counterbalanced by the normal reaction of 
the plane. The dry friction force acting on each of these masses obeys Coulomb's law 

Fi=-migkviv7 l, vi~O; [Fil~migk, vi=O (2.7) 

where F i is the two-dimensional friction force vector, lying in the Oxy plane, v i is the velocity vector of 
the point considezed, m i is its mass, g is the acceleration due to gravity and k is the coefficient of friction 
between the mas,;es and the plane. 

At the joints C1 and C2, there are control torques M1 and ME, respectively, created by motors located 
at these joints. We will assume that the moments M1 and M2 are applied to the end links 01C1 
and 02C2 respectively. Accordingly, the torques (-M1) and (-M2) are applied to the body by these 
links. 

The purpose of the present paper is to construct control laws ensuring the motion of a multilink system 
along a plane in any direction. To do this, it is sufficient to construct the laws of motion of a multilink 
system with an initial rectilinear configuration along itself (longitudinal motion) and across itself (lateral 
motion), and also its rotation on the spot. Using these forms of motion, it is easy to implement any 
movement. 

3. E L E M E N T A R Y  M O T I O N S  

The motions required will be constructed as combinations of simpler motions, which will be referred 
to as elementary motions. Elementary motions begin from a state of rest and end, likewise, in a state 
of rest. The initial and final values of the angle of rotation of a link, oq-, for each elementary motion 
will be denoted by t~ ° and ct~ respectively, where i = 1, 2. We also introduce the notation 

' - t l  0, i = 1 , 2  (3.1) A~ i = O~ i 

The elementary motions are divided into slow and rapid motions. 
In the slow motions, one or both end links move, their angular velocities and accelerations being 

sufficiently small for the body CIC 2 not to be involved in the motion. The angular velocity of rotation 
of each link, &i (i = 1, 2), retains a constant sign. To fix our ideas, we assume that the absolute value 
to of the angular velocity of the links, ~i (i = 1, 2), first increases from 0 to too and then decreases from 
too to 0. The absolute value of the angular acceleration I ~[ is assumed to be constant and equal to e0. 
The following rei[ations hold 

[~i]=to, ]Ao~il=tooTI2, i=1,2,  to0=e0T/2  
(3.2) 

to(t)=e0t, t~[O, TI2]; to(t)=Eo(T-t), te[TI2,  T] 

where T is the duration of the slow motion. The graph of to(t) is shown in Fig. 2. Either one end link 
takes part in the ,;low motions, the other remaining fixed, or both links move synchronously. In the latter 
case, they can rotate either in the same direction or in opposite directions, in which case the following 
condition is satisfied 

ct2(t) = +a l ( t )+  6, t e [0, T] (3.3) 

where 13 is a consl~ant. Both links begin and stop moving simultaneously, in the same time T, and relations 
(3.2) apply for each of them. 

In the rapid motions, the angular velocities and accelerations of the end links are fairly high, and 
the time of motion is short compared with the time of the slow motions T. Here, the values of the control 
torques M1 and M2 at joints C1 and C2, respectively, should be high compared with the moments of the 
friction forces, which are limited to values of the order of lagkL, where p. = max (m0, ml) and L = max 
(a, l). For this reason, when considering the rapid motions, one can neglect friction forces. During the 
rapid motions, both end links rotate either in the same direction or in opposite directions 
synchronously. Here, relations (3.3) are again satisfied, but additional conditions also apply. 

We shall examine the following three types of rapid motion. 
1. The end links rotate in opposite directions, and, at the beginning and end of the motion, one of 

the angles eq- (i ---- 1, 2) is zero. Taking account of condition (3.3), we have o~2(t) + txl(t) = [3 and 
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an ° = 0 ,  a °=1~ or ot °=13, ot ° = 0  (3.4) 

2. The end links rotate in opposite directions, with ~ = 0, so that o~2(t ) = -cxl(t). 
3. The end links rotate in the same direction, with [~ = 0, so that ot2(t) = -CXl(t). 
The variation of the angular velocities of the end links for the rapid motions is unimportant. What 

is important is simply the fact that the motions of the two links occur for the same time, satisfying the 
above conditions, and the fact that they begin and end in a state of rest. 

4. ANALYSIS  OF T H E  SLOW M O T I O N S  

Let us examine the balance of forces and torques in the slow motions and find the sufficient conditions 
for the body to remain fixed in these motions. 

Forces N1, R1 and N2, R2, respectively, act from the rotating end links 01C1 and 02C2 on the fixed 
body CIC2. These forces (in all cases, i = 1, 2) are 

Ni = mo ~21, Ri = mobil (4.1) 

Forces Ni are directed along the corresponding links OiCi, while the forces Ri are perpendicular to these 
links (see Fig. 3). Furthermore, the control torques equal to (-Mi) are applied to the body. To fix our 
ideas, we will assume that the body is parallel to the x axis. The projections onto the x and y axes of the 
friction forces applied to the points Ci will be denoted by Xi and Y/. 

We will set up the equations of equilibrium of the body under the action of the applied forces and 
torques. We will take as the three equilibrium equations the conditions that the sums of the moments 
of the applied forces about the joints C1 and C2 are zero and the conditions that the sum of the projections 
of all forces onto the x axis is zero. We then have 

2a(N i sin Oti - R i cos oti -T- Y/) = M 1 + M 2 (4.2) 

N n cos oc I + R I sin oq - N 2 cos cx 2 - R 2 sin a 2 = X n + X 2 (4.3) 

Here and below, the convention assumed in Section 2 applies: the upper minus and plus signs 
correspond to i = 1, and the lower signs correspond to i = 2. The condition that the sum of the projections 
of all forces onto the y axis is zero is a consequence of Eqs (4.2). 

Note that the system in question is statically indeterminate: for the four unknown reaction forces Xi, 
Y/there are a total of only three equations (4.2), (4.3). 

- MI 

Y 
Fig. 3. 
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The projections onto the x and y axes of the overall forces O i applied to the body by the end links 
OiCi will be denoted by ~ ,  and Oiy- 

¢]~i., = ~ ( N i  c o s  Ot i + R i sin ~t i), ~/v = "T-(Ni sin tx i - R i c o s  13t i ) (4.4) 

Using the notatic,n (4.4), from (4.2) we find 

Yi =-tYPiy'T'Q, Q = ( g l  + M2)l(2a)  (4.5) 

Equation (4.3) can be rewritten in the form 

Xi + X2 = --tl)l~ - ~2x (4.6) 

Equilibrium of the body will occur if there are reactions Xi, Y,. satisfying relations (4.5), (4.6) and the 
inequalities of Coulomb's law (2.7) 

(X/2 + ~2),/2 <~ Fi ' Fj = m, gk (4.7) 

Thus, the forces ]~ are uniquely defined by relations (4.5), while the forces Xi satisfy the single equality 
(4.6). Furthermo:re, all of these forces must satisfy inequalities (4.7). 

Since, to ensure equilibrium, it is sufficient to indicate one set of forces Xi, Yi satisfying conditions 
(4.5)-(4.7), we assume that 

X i = -¢Pix (4.8) 

Equation (4.6) is satisfied in this case. Bearing in mind the derivation of the simple sufficient conditions 
of equilibrium, we will replace inequalities (4.7) with the more rigid conditions 

IX,- I+1Y~ I ~< Ft (4.9) 

which guarantee that inequalities (4.7) are satisfied. Substituting inequalities (4.5) and (4.8) into the 
left-hand side of inequality (4..9), we obtain the chain of inequalities 

2 2 112 I X i l + l Y , . l < ~ l ~ i x . l + l ~ i y l + l O l < - - , / 2 ( ~ i x + e i ,  iy) +IQI  = 

=~1~i I+IQI  = 4~(N~ + R~)l'2+ I Q I = (4.10) 

= "~mol((x 4 + (X~)l/2 + I QI ~< "~mol((oo 4 + E02) '/2 + I QJ 

Here, use is m~Lde of the fact that the force ~i, with which end link O~Ci acts on the body, is developed, 
on the one hand, into the components ~ ,  ~ ,  and, on the other hand, into the components N~, Ri, 
determined by relations (4.1). Furthermore, estimates of the angular velocities and accelerations 
stemming from (3.2) are used. 

We will now estimate the control torques Mi. We will write the equation of rotation of the end link 
O,Ci in the form 

mol2~i = Mi - mogklsign (~i 
The following estimate results from (4.11) and (3.2) 

(4.11) 

IMi(t) l ~< M0, M0 = mol(eol+gk)  (4.12) 

We will estimate the value of Q from (4.5). If, in the slow motion, both end links rotate in the same 
direction, then M1 = Mz and from (4.5) and (4.12) we obtain 

J Q[ <~ Mo a-I (4.13) 
Estimate (4.13) obviously also holds when only one link rotates (the torque M1 or M2 is zero) and 

when the links rotate in opposite directions (M 1 + M 2 = 0). Substituting estimates (4.10), (4.12) and 
(4.13) into (4.9), we obtain the inequality 
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m01[-v~(~ g + 1~2) It2 + (•01 + gk)a -I ] <~ mlgk (4.14) 

which is the sufficient condition for the body to remain immobile for all slow motions. 
A considerably better condition can be obtained for the slow motion during which the end links rotate 

in opposite directions. In this case we have M I + M2 = 0 and Q = 0. Substituting (4.5) and (4.9) into 
the left-hand side of initial inequality (4.7), instead of (4.10) we have 

(X/2 + y/2)1/2 = (*~x + @~,),/2 =[ ~i  I ~ mol(O)g + eg) '/2 (4.15) 

Substituting inequality (4.15) into condition (4.7), we obtain the sufficient condition for the body to be 
immobile when the end links rotate in opposite directions 

m0/(to 4 +E~)) 1/2 ~< mlgk (4.16) 

Condition (4.16) is always satisfied for sufficiently slow rotations when COo and e0 are sufficiently small. 
Condition (4.14) is obviously satisfied for fairly slow rotations if mol < mla.  

5. ANALYSIS OF THE R A P I D  M O T I O N S  

As noted above, the rapid motions are implemented by large control torques, compared with which 
the moments of the friction forces are negligible. Therefore, for the rapid motions the influence of friction 
forces can be neglected. Since these motions begin from a state of rest, during the rapid motions the 
position of the centre of mass of the multilink system remains unchanged, and its angular momentum 
remains equal to zero. We then have 

2 c = 0 ,  Yc =0, K = 0  

Substituting relations (2.3) into the first two equalities of (5.1), we obtain 

(5.1) 

Jc = -mom-' l (O 1 sin 01 - 62 sin 02) 

= mom-tl(Oi cos O I - 62 cos 02 ) 

(5.2) 

We transform expression (2.6) by substituting into it relations (5.2) and the equalities 

6 i = 6 + & i '  i = 1, 2, 1~2 = +&l (5.3) 

which follow from (2.1) and conditions (3.3). 
For the case where the end links rotate in opposite directions, selecting the minus sign in (5.3), we obtain 

K = 2{ (too/2 + mo a2 + ml a2 ) - m2m -II 2 [1 - cos(oq - ix 2 )] + 

+moal(cos tx 1 + cos tx 2) }0 + moal(& t cos oq + &2 cos Ix 2) 

(5.4) 

We will examine the motions of the body separately for rapid motions 1 and 2 from Section 3. 
For motion 1, in accordance with condition (3.3), we make the change of variables 

O~1 = ~ / 2  +'¢1, ~2 =1~/2--1"1 (5.5) 

The new variable rl, according to conditions (3.3) and (3.4), changes during the motion either from - 
13/2 to 13/2 or from 13/2 to -13/2, i.e. always in the range [111 ~< [ 131 /2. After substituting (5.5), relation 
(5.4) takes the form 

K = 2 f ( q ) 0 -  2h(q)il 

f( 'q) =mo 12 +mo a2 + rala 2 - 2m2ra-ll 2 sin 21] + 2moal cos(13 / 2)cos 1" I (5.6) 

h(Vl) = moal sin(J] / 2) sin 11 
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Since K = 0, by (5.1), from (5.6) we have a quadrature for the increment in the angle 0 during the 
motion 

Ao = + p~2 h{n) an (5.7) 
-~/2 f(~) 

The _+ signs in (5.7) correspond to the two possible cases in (3.4). Since f(rl) is an even function and 
h(rl) is an odd function [see (5.6)], in both cases we have A0 = 0. 

For motion 2, in relations (5.5) and (5.6) it must be assumed that 13 = 0. In this case we have 
h(rl) --- 0, and the condition K = 0 leads to the relation {) = 0, 0 = const. 

Thus, in motion 2, the angle of inclination of 0 of the body to the x axis remains constant, and in 
motion 1 this angle oscillates, but its final value is the same as the initial value. We will select the 
orientation of the: axes so that the x axis is parallel to the body at the beginning of motions 1 and 2. 
Then, for both of these motions we have 0 = 0 at the beginning and at the end of them. 

We will determine the increments Ax and Ay of the coordinates of the middle of the body during the 
time of motions 1 and 2. Since, by (5.1), the displacement of the centre of mass for these motions is 
zero (Ar c = Ay c := 0), from (2.3) we have 

Ax  = mom-I  IA( cos  Oi - cos02) 

Ay  = mom-I  IA(sin 01 - sin 0 2) 

(5.8) 

The symbol A in all cases denotes the total increment of the corresponding quantity during the motion. 
We substitute relations (2.1) and (5.5) into (5.8) and bear in mind that 0 = 0 at the beginning and 

end of the motion. We obtain 

Ax  = -2mom-I l s in(15  / 2)A sin 11 
(5.9) 

Ay = 2mom-llcos([3 / 2)A sin TI 

In motion 1, the quantity 11 changes either from -13/2 to 13/2 or from 13/2 = -13/2. Therefore,  for motion 
1, from (5.9) we obtain 

Ax  = T-4mom-llsin 2 (~12), Ay = rl:2mom-t lsin~ (5.10) 

where the choice of  the upper and lower minus and plus signs corresponds to the two cases of 
(3.4). 

In motion 2 we have 13 = 0 and rl = 51 = -a2. From (5.9) we obtain 

Ax  = O, Ay  = 2 m o m - I I ( s i n a l  - s ina  °) (5.11) 

It remains to examine rapid motion 3, in which 52 = 51 and, by (2.1), 02 m 01" From relations (5.2) 
we obtain x = y = 0, i.e., the middle of the body remains fixed. Having placed the origin of coordinates 
of the Oxy system in the middle of the body, we shall have x = y = 0. Expression (2.6) for the angular 
momentum in the case of motion 3 takes the form 

K = 2(m0/2 + rno a2 + mla  2 + 2moal  cosot!)0 + 2mol(l  + a cos oq)dt I 

Since K = 0, from (5.12) we can define the increment A0 in the form of a quadrature 

(5.12) 

a 1 

ao  = -  I q a,)aat (5.13) 
~t l} 

The function q~(al) is equal to the ratio of the coefficients of (~1 and 0 in (5.12), while a ° and a 1 are 
the initial and final values of the angles al  = a2. 

We will now form the longitudinal/lateral and rotational motions of the multilink system from the 
elementary motions described in Section 3. 
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6. L O N G I T U D I N A L  M O T I O N  

At the initial instant of time, let the multilink system be at rest, and let all its links be parallel to the 
x axis. In this state we have 0 = cz 1 = cc 2 = 0 (see state 0 in Fig. 4). 

The longitudinal motion can be provided by executing consecutively the following elementary motions. 
1. Slow motion during which the link 01C 1 rotates about the joint C1 by an angle of 7. The other 

sections remain fixed, and the multilink system passes into state 1 in Fig. 4, in which cq = 7 and oc2 = 0. 
2. Rapid motion of type 1 from Section 3, as a result of which the angle czl changes from 7 to 0, and 

the angle 0c2 changes from 0 to 7. The multilink system passes into state 2 in Fig. 4. 
3. Slow motion, during which the angle cq changes from 0 to -y, and the angle ct2 changes from 7 

to 0. The multilink system passes into state 3 in Fig. 4. 
4. Rapid motion of type 1 from Section 3, as a result of which the angle C~l changes from -7 to 0, and 

the angle ccz changes from 0 to -7- The multilink system passes into state 4 in Fig. 4. 
5. Slow motion, as a result of which the angle o¢1 changes from 0 to y, and the angle a2 changes from 

-Y to 0. The multilink system passes into state 5 in Fig. 4. 
It is not difficult to see that state 5, in which oq = y and c¢2 = 0, is identical with state 1 (see Fig. 4). 

Further, the cycle of two rapid and two slow motions, transferring the multilink system from state 1 to 
state 5, can be repeated any number of times. For the multilink system to be transferred from state 5 
to the initial rectilinear state 0 at the end of the motion, it is necessary to perform the slow motion 
changing in the angle c¢1 from 7 to 0. 

It will be recalled that each elementary motion begins and ends in a state of rest. We will determine 
the change in the position and orientation of the body as a result of one cycle of motion, transferring 
the multilink system from state 1 to state 5. Note that, in the course of slow motions, the body remains 
fixed, but the centre of mass of the multilink system moves along the x axis. This can be clearly seen 
from a comparison of the pairs of states 2, 3 and 4, 5 in Fig. 4: each time, the ends of the multilink 
system are displaced to the right along the x axis. In the course of rapid motions, on the other hand, 
the centre of mass of the multilink system remains fixed, but its body moves. As shown in Section 5, 
the orientation of the body does not change in the case of rapid motions of type 1 (A0 = 0), but the 
centre of the body undergoes displacements defined by formulae (5.10). For both rapid motions of type 
1 that occur within the cycle, the second case of (3.4) occurs, so that the lower signs must be chosen in 
the formulae for the displacement (5.10). Here, the angle [3 from (5.10) is equal to ---Y for these two 
motions. Therefore, the complete change in y over the entire cycle is equal to zero, and the complete 
change A0x in the x coordinate is equal to 

AoX = 8mom-I l s in2(T  I 2 ), m = 2(m o + m I) (6.1) 

Formula (6.1) defines the displacement of the multilink system over a cycle of the longitudinal motion. 
Since the duration of the rapid phases of motion is much shorter than the duration of the slow phases, 
the complete time of a cycle is approximately 2T, where T is the duration of the slow motion. In the 
notation of (3.1) and (3.2) we have 

I Aot I= "t, o0 = 277" -t, (6.2) 

We substitute relations (6.2) into condition (4.14) 

ck(~ 

o(° 
o% 

c ~ 0  
c )  ~,! 

e ) ' J J  

"% , i  

c ~ ,~(0 

Fig. 4. 
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mo I [4 .~¥(y2  + 1)it2 T--2 + (4~T-2 + gk)a-I] ~ mtg k (6.3) 

To keep the body fixed in the slow phases of the longitudinal motion, it is sufficient for its parameters 
to satisfy condition (6.3). The average velocity of the longitudinal motion is defined by 

vl = Aox(2T) -I (6.4) 

The quantity Ao~ is given by formula (6.1). 

7. LATERAL MOTION 

The lateral motion of the multilink system is simpler than the longitudinal motion. Again, it is assumed 
that, at the initial instant of time, the multilink system is at rest and forms a segment parallel to the x 
axis (see state 0 in Fig. 5). We have 0 = 61 = 62 = 0. 
The lateral motion can be provided by the following combination of elementary motions. 

1. Slow motion, during which both end links 01C1 and 01C2 rotate about the corresponding joints 
C1 and C2 by anff~es -y  and y respectively. As a result, the multilink system is transferred to state 1 in 
Fig. 5, in which 61 = --y and 62 = Y. 

2. Rapid motion of type 2 from Section 3, as a result of which the angle 61 changes from -~, to y, and 
the angle 62 changes from y to -y. The multilink system is transferred to state 2 in Fig. 5. 

3. Slow motion, in the course of which the angle 61 changes from y to -y, and the angle 62 changes 
from -y  to y. The multilink system is transferred to state 3 in Fig. 5. 

State 3 is identical to state 1. Further, the cycle of one rapid motion of type 2 and one slow motion 
can be repeated any number of times. To bring the system back to its initial state at the end of the motion, 
it is sufficient to execute a slow motion, changing, in the course of the motion, the angle 61 from -y  to 
0 and the angle 62 from y to 0. 

During the lateral motion, as follows from Section 5, the orientation of the body remains unchanged 
(0 - 0), and the longitudinal displacement is zero (Ax = 0). The full lateral displacement of the body 
over a cycle, according to formula (5.11), is equal to 

AoY -- 4mom-tlsin V, m = 2(m 0 + m I) (7.1) 

The duration of the cycle of the lateral motion is approximately equal to the time T of the slow phase. 
In the notation of (3.1) we have 

IAal=2¥,  to0--43~ r-I, E0--8"/T -2 (7.2) 

Substituting (72) into condition (4.16), we obtain 

8m0Y(4y2 + i) ~ T-2 ~ mtg k (7.3) 

Condition (7.3) is the sufficient condition for the body to be immobile in the slow phase of the lateral 
motion. The average velocity of the lateral motion is equal to 

v 2 = Aoy T-t (7.4) 

The quantity Aay is given by formula (7.1). 

Fig. 5. 



14 E L. Che rnous ' ko  

8. R O T A T I O N  O F  T H E  M U L T I L I N K  S Y S T E M  

In o rder  to turn a mult i l ink system of  initial recti l inear form (0 = a l  = ~2 = 0), we shall pe r fo rm 
the following mot ions  (c~1 = a2 in all cases). 

1. A slow mot ion  to change  the angles cq = ~2 f rom 0 to c~ °. The  multi l ink system will be t ransfer red  
f rom state 0 to state 1 in Fig. 6. 

2. Rapid  mot ion  of  type 3, during which the angles c~1 = c~2 change f rom s ° to ~1. In this case 
the body  will ro ta te  by an angle of  A0, and the multi l ink system will be t ransfer red  to state 2 in 
Fig. 6. 

These  mot ions  can be repea ted .  To t ransfer  the multi l ink system f rom state 2 to a recti l inear state, 
it is necessary to carry out a slow motion,  changing the angles a l  = a2 f rom c~ 1 to 0. The  angle of  rotat ion 
of  the multilink system is defined by formula  (5.13). The  sufficient conditions for the body to be immobile  
in the slow phase  of  ro ta t ion  have the fo rm (6.3), where  7 = ]a l  _ ot0l. 

9. E X A M P L E S  

We will specify the following values of the parameters 

y = n / 4 ,  k = 0 . 3 ,  g = 9 . 8 m s  -2 (9.1) 

and examine two forms of multilink system: "large" and "small". For the large multilink system, it will be assumed 
that 

m 0 =  lkg ,  m l =  1.6kg, a = l = 0 . 2 m ,  T =  l s  (9.2) 

and for the small muitilink system it will be assumed that 

m 0 = 0 . 1 k g ,  m l = 0 . 1 6 k g ,  a = l = 0 . 0 2 m ,  T = 0 . 5 s  (9.3) 

Substituting the values given in Eqs (9.1)-(9.3) into conditions (6.3) and (7.3), it can be shown that both of these 
conditions are satisfied for both multilink systems. The average velocities of longitudinal motion (6.4) and lateral 
motion (7.4) for the large multilink system (9.2) are as follows: 

D 1 = 0.02 m s -1, ½ = 0.1 m s -1  

and for the small muitilink system (9.3) they are as follows: 

V 1 = 0.01 m s -1, ½ = 0.05 m s -1  

To maintain the motions, the torques Mi developed by the motors must be significantly greater (by an order of 
magnitude) than the moments of the friction forces mogkl. For the large multilink system (9.1) these moments should 
be of the order of 4-8 N m, and for the small multilink system (9.2) of the order of 0.1-0.2 N m. 

Fig. 6. 
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10.  C O N C L U S I O N S  

It has been shown that a plane multilink system can move along a rough plane in different directions 
and rotate under the action of internal control torques perpendicular to the plane of motion. Design 
methods have been proposed for the longitudinal motion, lateral motion and rotation, and sufficient 
conditions for their feasibility have been found. The displacements and average velocities of motion 
have been estimated. The sufficient conditions have a large safety margin; these motions are also feasible 
with less stringent requirements concerning the parameters of the multilink system and the 
characteristics of the motions. 

The proposed fe,rms of motion consist of slow phases, during which the body (the central link) of 
the multilink system remains stationary, and rapid phases, in which, due to intense "paddling" of the 
end links, the body moves in the necessary direction. Computer simulation has confirmed the feasibility 
of the longitudinal and lateral motions of the multilink system with more accurate and detailed allowance 
for all the factors involved. 

The mode of motion considered is distinguished by the fact that the moving body performs plane 
motion and is in contact with the plane the whole time at the same points. It is this characteristic of 
the motion that is possessed by snakes and some other limbless animals moving solely by bending their 
bodies, which lie o:a the ground the whole time. 

Certain important features of the mode of motion considered will be pointed out. 
1. Since the motion of the system is planar, the apparatus may be small in height. For comparison, 

note that the height of wheeled and walking systems has a lower limit, set by the size of the wheels or 
legs. 

2. The apparatus may be equipped with only two motors, whereas for walking device at least two 
motors per leg are required. 

3. Both the design of the device and the control mode are extremely simple. 
By virtue of the ~tbove, the mode of motion considered may be useful as a possible form of movement 

for small mobile robots (mini- and microrobots). 
This research was supported financially by the Russian Foundation for Basic Research (99-01-00258). 
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